156 research outputs found

    Hidden Markov models predict the future choice better than a PSTH-based method

    Get PDF
    Beyond average firing rate, other measurable signals of neuronal activity are fundamental to an understanding of behavior. Recently, hidden Markov models (HMMs) have been applied to neural recordings and have described how neuronal ensembles process information by going through sequences of different states. Such collective dynamics are impossible to capture by just looking at the average firing rate. To estimate how well HMMs can decode information contained in single trials, we compared HMMs with a recently developed classification method based on the peristimulus time histogram (PSTH). The accuracy of the two methods was tested by using the activity of prefrontal neurons recorded while two monkeys were engaged in a strategy task. In this task, the monkeys had to select one of three spatial targets based on an instruction cue and on their previous choice. We show that by using the single trial’s neural activity in a period preceding action execution, both models were able to classify the monkeys’ choice with an accuracy higher than by chance. Moreover, the HMM was significantly more accurate than the PSTH-based method, even in cases in which the HMM performance was low, although always above chance. Furthermore, the accuracy of both methods was related to the number of neurons exhibiting spatial selectivity within an experimental session. Overall, our study shows that neural activity is better described when not only the mean activity of individual neurons is considered and that therefore, the study of other signals rather than only the average firing rate is fundamental to an understanding of the dynamics of neuronal ensembles

    Low-dimensional dynamics for working memory and time encoding

    Get PDF
    Our decisions often depend on multiple sensory experiences separated by time delays. The brain can remember these experiences and, simultaneously, estimate the timing between events. To understand the mechanisms underlying working memory and time encoding, we analyze neural activity recorded during delays in four experiments on nonhuman primates. To disambiguate potential mechanisms, we propose two analyses, namely, decoding the passage of time from neural data and computing the cumulative dimensionality of the neural trajectory over time. Time can be decoded with high precision in tasks where timing information is relevant and with lower precision when irrelevant for performing the task. Neural trajectories are always observed to be low-dimensional. In addition, our results further constrain the mechanisms underlying time encoding as we find that the linear “ramping” component of each neuron’s firing rate strongly contributes to the slow timescale variations that make decoding time possible. These constraints rule out working memory models that rely on constant, sustained activity and neural networks with high-dimensional trajectories, like reservoir networks. Instead, recurrent networks trained with backpropagation capture the time-encoding properties and the dimensionality observed in the data

    Adult neural stem cells and multiciliated ependymal cells share a common lineage regulated by the Geminin family members

    Get PDF
    Adult neural stem cells and multiciliated ependymalcells are glial cells essential for neurological func-tions. Together, they make up the adult neurogenicniche. Using both high-throughput clonal analysisand single-cell resolution of progenitor division pat-terns and fate, we show that these two componentsof the neurogenic niche are lineally related: adult neu-ral stem cells are sister cells to ependymal cells,whereas most ependymal cells arise from the termi-nal symmetric divisions of the lineage. Unexpectedly,we found that the antagonist regulators of DNA repli-cation, GemC1 and Geminin, can tune the proportionof neural stem cells and ependymal cells. Our find-ings reveal the controlled dynamic of the neurogenicniche ontogeny and identify the Geminin familymembers as key regulators of the initial pool of adultneural stem cells

    Artificially decreasing cortical tension generates aneuploidy in mouse oocytes

    Get PDF
    Human and mouse oocytes’ developmental potential can be predicted by their mechanical properties. Their development into blastocysts requires a specific stiffness window. In this study, we combine live-cell and computational imaging, laser ablation, and biophysical measurements to investigate how deregulation of cortex tension in the oocyte contributes to early developmental failure. We focus on extra-soft cells, the most common defect in a natural population. Using two independent tools to artificially decrease cortical tension, we show that chromosome alignment is impaired in extra-soft mouse oocytes, despite normal spindle morphogenesis and dynamics, inducing aneuploidy. The main cause is a cytoplasmic increase in myosin-II activity that could sterically hinder chromosome capture. We describe here an original mode of generation of aneuploidies that could be very common in oocytes and could contribute to the high aneuploidy rate observed during female meiosis, a leading cause of infertility and congenital disorders

    Representations of time in human frontoparietal cortex

    Get PDF
    Precise time estimation is crucial in perception, action and social interaction. Previous neuroimaging studies in humans indicate that perceptual timing tasks involve multiple brain regions; however, whether the representation of time is localized or distributed in the brain remains elusive. Using ultra-high-field functional magnetic resonance imaging combined with multivariate pattern analyses, we show that duration information is decoded in multiple brain areas, including the bilateral parietal cortex, right inferior frontal gyrus and, albeit less clearly, the medial frontal cortex. Individual differences in the duration judgment accuracy were positively correlated with the decoding accuracy of duration in the right parietal cortex, suggesting that individuals with a better timing performance represent duration information in a more distinctive manner. Our study demonstrates that although time representation is widely distributed across frontoparietal regions, neural populations in the right parietal cortex play a crucial role in time estimation

    Vicarious Learning from Human Models in Monkeys

    Get PDF
    We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object–reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was apparent from the first trial of the test phase, confirming the ability of monkeys to learn by vicarious observation of human models

    Tracking Growing Axons by Particle Filtering in 3D+t Fluorescent Two-Photon Microscopy Images

    Get PDF
    International audienceAnalyzing the behavior of axons in the developing nervous systems is essential for biologists to understand the biological mechanisms underlying how growing axons reach their target cells. The analysis of the motion patterns of growing axons requires detecting axonal tips and tracking their trajectories within complex and large data sets. When performed manually, the tracking task is arduous and time-consuming. To this end, we propose a tracking method, based on the particle filtering technique, to follow the traces of axonal tips that appear as small bright spots in the 3D+t fluorescent two-photon microscopy images exhibiting low signal-to-noise ratios (SNR) and complex background. The proposed tracking method uses multiple dynamic models in the proposal distribution to predict the positions of the growing axons. Furthermore, it incorporates object appearance, motion characteristics of the growing axons, and filament information in the computation of the observation model. The integration of these three sources prevents the tracker from being distracted by other objects that have appearances similar to the tracked objects, resulting in improved accuracy of recovered trajectories. The experimental results obtained from the microscopy images show that the proposed method can successfully estimate trajectories of growing axons, demonstrating its effectiveness even under the presence of noise and complex background

    Automated Nuclear Analysis of Leishmania major Telomeric Clusters Reveals Changes in Their Organization during the Parasite's Life Cycle

    Get PDF
    Parasite virulence genes are usually associated with telomeres. The clustering of the telomeres, together with their particular spatial distribution in the nucleus of human parasites such as Plasmodium falciparum and Trypanosoma brucei, has been suggested to play a role in facilitating ectopic recombination and in the emergence of new antigenic variants. Leishmania parasites, as well as other trypanosomes, have unusual gene expression characteristics, such as polycistronic and constitutive transcription of protein-coding genes. Leishmania subtelomeric regions are even more unique because unlike these regions in other trypanosomes they are devoid of virulence genes. Given these peculiarities of Leishmania, we sought to investigate how telomeres are organized in the nucleus of Leishmania major parasites at both the human and insect stages of their life cycle. We developed a new automated and precise method for identifying telomere position in the three-dimensional space of the nucleus, and we found that the telomeres are organized in clusters present in similar numbers in both the human and insect stages. While the number of clusters remained the same, their distribution differed between the two stages. The telomeric clusters were found more concentrated near the center of the nucleus in the human stage than in the insect stage suggesting reorganization during the parasite's differentiation process between the two hosts. These data provide the first 3D analysis of Leishmania telomere organization. The possible biological implications of these findings are discussed

    Wild chacma baboons (Papio ursinus) remember single foraging episodes

    Get PDF
    This study was supported by grants from ZĂŒrcher Hochschulverein, Schweizerische Akademie fĂŒr Naturwissenschaften, Stiftung Thyll-DĂŒrr, and Stiftung Annemarie Schindler, to R.N.Understanding animal episodic-like memory is important for tracing the evolution of the human mind. However, our knowledge about the existence and nature of episodic-like memory in non-human primates is minimal. We observed the behaviour of a wild male chacma baboon faced with a trade-off between protecting his stationary group from aggressive extra-group males and foraging among five out-of-sight platforms. These contained high-priority food at a time of natural food shortage. In 10 morning and eight evening trials, the male spontaneously visited the platforms in five and four different sequences, respectively. In addition, he interrupted foraging sequences at virtually any point on eight occasions, returning to the group for up to 2 h. He then visited some or all of the remaining platforms and prevented revisits to already depleted ones, apparently based on his memory for the previous foraging episode about food value, location, and time. Efficient use of memory allowed him to keep minimal time absent from his group while keeping food intake high. These findings support the idea that episodic-like memory offers an all-purpose solution to a wide variety of problems that require flexible, quick, yet precise decisions in situations arising from competition for food and mates in wild primates.PostprintPeer reviewe

    An Image-Based High-Content Screening Assay for Compounds Targeting Intracellular Leishmania donovani Amastigotes in Human Macrophages

    Get PDF
    Leishmaniasis is a tropical disease threatening 350 million people from endemic regions. The available drugs for treatment are inadequate, with limitations such as serious side effects, parasite resistance or high cost. Driven by this need for new drugs, we developed a high-content, high-throughput image-based screening assay targeting the intracellular amastigote stage of different species of Leishmania in infected human macrophages. The in vitro infection protocol was adapted to a 384-well-plate format, enabling acquisition of a large amount of readouts by automated confocal microscopy. The reading method was based on DNA staining and required the development of a customized algorithm to analyze the images, which enabled the use of non-modified parasites. The automated analysis generated parameters used to quantify compound activity, including infection ratio as well as the number of intracellular amastigote parasites and yielded cytotoxicity information based on the number of host cells. Comparison of this assay with one that used the promastigote form to screen 26,500 compounds showed that 50% of the hits selected against the intracellular amastigote were not selected in the promastigote screening. These data corroborate the idea that the intracellular amastigote form of the parasite is the most appropriate to be used in primary screening assay for Leishmania
    • 

    corecore